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It was shown in [l-4] that the integral variational principles of Hamilton, 
Lagrange, and Jacobi are valid for holonomic, as well as nonholonomic systems, 

although in the case of the Latter the comparison curves do not, generally, sat- 
isfy the nonintegrable constraint equations. Hence, generally speaking, they 
are not principles of stationary action for nonholonomic systems. The neces- 

sary and sufficient conditions of existence of solutions of the equations of mo- 
tion of nonholonomic systems among solutions of Euler’s equations of the 

Lagrange problem were established in [5] for the Hamilton principle, i. e. when 
in the first approximation it is the principle of stationary action. The similar 
problem for the Lagrange and the Jacobi principles is solved here for mechani- 
cal systems subjected to nonholonomic stationary constraints homogeneous with 
respect to generalized velocities, and acted upon by potential forces defined 
by derivatives of the generalized force function. Necessary and sufficient 
conditions for the Lagrange and Jacobi principles to be principles of stationary 
action are established. These conditions coincide with those in [5]. Condi- 

tions under which the theorem and the energy integral of systems subjected to 
ideal nonlinear nonholonomic constraints are also formulated, and conditions 
under which real displacements of a nonholonomic system can be found among 

possible displacements are indicated. 

1. Let us consider a mechanical system under nonintegrable ideal constraints 

(1.1) 

nonlinear, in the general case, relative to the generalized velocities qi’ = dqi / dt, 
where qi(i=1,..., n) are the system’s Lagrange coordinates and t is time. 

Constraints (1.1) are assumed independent. i. e., 

One of the fundamental principles in the dynamics of mechanical systems is the 
D’Alembert-Lagrange principle which in generalized coordinates has the form 

(1.2) 

625 



626 V. V. Ilumiantsev 

Here L (qi, qi’, t) =T T -I- U is the Lagrange function, T (qi, qi’, t) is the 
kinetic energy, U = U, (gi, qi.3 t) -t Ua (gi, t) is the generalized force function, 
where the function U1 (qi, qi , t) in a linear form in the velocities qi*, Qi are the 
generalized nonpotential forces, and 6qi are the feasible (virtual) displacements sat- 
isfying the Chetaev conditions 

‘t aft c YJ-pqi = 0 (Z=i,...,I”) 
ill ’ 

(I* 3) 

Function L is of the second degree in the generalized velocities, L = L, + L,*+ 
ia, where Lz = ?'z is a ~itive-debate quadratic form, L, - T, + U, is a 

linear form in the velocities gig, and Lo = To $- U. is independent of QI’. 
If the real displacements d@i = ~2’ dt of the system are found among the feasi- 

ble displacements 6q,, then fTom relation (1.2) follows the energy theorem 

(1.4) 

of the same form as for holonomic systems when constraints (1.1) are absent. If the 

nonpotential forces are gyroscopic or are absent, while the Lagrange functions doesnot 
depend explicitly on time, i. e., under the conditions 

n 

Qiqi‘ =I 0, +- = 0 (X.5) 

we obtain the generalized energy integral 
11 

c . aL qi dQi’ -_,~LP-Lo=Tz-To-UUo=h=const (I*@ 

+I 

from equality (1.4). Integral (1.6) becomes the physical energy integral 

T- U, = h (1.7) 

if the geometric (finite) constraints imposed on the system are stationary (then 2” = 

‘T,, T, = T, = 0). 
Incorrect assertions are encountered even in textbooks when discussing the condi- 

tions when the real displacements of a nonholonomic system are to be found among its 
feasible displacements. Thus (see [S] ), it is asserted that “under differential constr- 
aints, just as under finite constraints, the virtual displacements coincide with the true 
ones if the constraint is scleronomous, i. e, , the equation of the differential constraint 

has the form 

dz, -J- b,, hayu + cp&+,) = 0 

where apLV b,,, cpo are functions only of the coordinates and not of time occurring 

explicitly”. However, it is not difficult to see [4,7] that in the case of rheonomic 
homogeneous constraints of such kind, when the coefficients ape, bpD, cpo do depend 
explicitly on time, the real displacements are found among the feasible ones. Regard- 
ing nonlinear constraints of form (1. l), their time independence does not ensure the 
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possession of this property in the general case. As a matter of fact, in order that the 
real displacements dq, = qt’dt be found among the feasible ones satisfying conditions 
(1.3), it is necessary and sufficient that conditions 

(l=i;....F) (1.8) 

be fulfilled. These conditions are fulfilled for constraints homogeneous in Qi’ since 
by Euler’s theorem on homogeneous functions we have 

independently of the stationarity of constraint (1.2); kl is the degree of homogeneity 
of function fl. Conversely, conditions (1.8) are, generally speaking not fulfilled 
for inhomogeneous constraints even if functions (1.1) are time-independent. From 
what has been said it is obvious that in the general case one cannot carry over to non- 

holonomic systems the assertion, valid for holonornic systems, that if the constraints 
do not depend explicitly on time, the real displacements are to be found among the 

feasible ones. We remark that in the case of homogeneous constraints (1.1) the class 
of feasible velocities includes the rest state qi’ = 0, in connection with which 
systems under nonlinear homogeneous constraints can be referred to the category of 

catastatic systems [4]. 

Let us now consider the inverse problem, Assume that the equations of motion of 
a nonholonomic system 

where pt are Lagrange multipliers, admit of energy integral (1.6). Differentiating 
(1.6) with respect to t relative to (1.9), we find that for relation (1.6) to be, under 
conditions (1.5). an integral of Eqs. (1.9), it is necessary and sufficient that the iden- 

tity 

c 
1. i 

QZ$+O (1.10) 

be fulfilled under conditions (1.1). Condition (1.10) is fulfilled for homogeneous con- 
straints, but, generally speaking, it is not fulfilled for inhomogeneous constraints. 
Thus, for example, if only one constraint of form (1.1) is imposed on the system, then 
condition (1.10) with p # 0 reduces to one equality of form (1. 8), not fulfilable 
in general case for an inhomogeneous constraint f (Qi, 4i’, t) = 0. 

2. From now on we assume that only potential forces possessing either a generaliz- 
ed force function U = U, i u, or a force function u = U, act on the system, 
so that all nonpotential force Qi = 0 (i = 1,. . . , n), the Lagrange function L 
= T + U does not depend explicitly on time and the constraints (1.1) are homo- 

geneous in qi’ and do not depend explicitly on time, i. e., are 

fr (@II 4;) = 0 (1 = 1, . * * , cl (2.1) 
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Under these conditions the generalized energy integral (1.6) or the energy integral 

(1.7) holds. The existence of integral (1.6) or (1.7) permits use, as is well known ~11, 
when considering an integral variational principle of least action, to restrict the set of 

comparable motions leading the system from one position to another, in which the 
energy has one and the same fixed value h . 

Let US consider the real motion of the system between some initial position P, 
and final position PI, for which the constant h of the generalized energy integral 

(1.6) has a specific value. If we compare this motion with sufficiently proximate varia- 
tional motions between the same initial P, and final P, positions, taking place, 
with Eq. (1.6) observed, with the same value of constant h of generalized energy as 
in the real motion, then for the latter, by the Lagrange principle [B] 

t1 11 

A’ 
SC 

gq;a = 0 (2.2) 
to i=l z 

Here A is the symbol of complete (asynchronous) variation, and it is assumed that at 
the initial position P, and final position P, , passed through at instants t, and 

t,, all 

Aqi = 0 (i = 1,. . ., KZ) (2.3) 

The instants at which the system passes through positions P, and PI are not fixed; 
they depend upon the curve along which the system moves, i. e., in the general case, 

At, # 0 and At, f 0. The complete and the synchronous (virtual) variations of 
the coordinates are connected by the relation 

Aqi = 6qi + Qi’At (2.4) 
applicable as well to any differentiable function of the coordinates and time. We hence- 
forth assume that the variations Aqi and At are function of t of class C,. 

We note that by virtue of integral (1.6) the Lagrange principle (2.2) can be written 

as well in the form [4] t1 

A (L+h)dt=O 
s (2.5) 
to 

under conditions (2.3) and (1.6). The Lagrange principle in form (2.2) or (2.5) is 

valid both for holonomic systems as well as for nonholonomic generalized-conservative 
or conservative systems [l-4]. We can convince ourselves of this, for example, by 
deriving the Eqs. (1.9) of motion of nonholonomic systems (with Qi = 0) from( 2.2) 

or (2.5). However, for nonholonomic systems the variational motions do not, 

generally speaking comply with constraint equations (2.1); in view of this the 
writing of (2.2) or (2.5) has a conditional sense [4] : the comparison curves do not 
satisfy Eqs. (2. l), whereas a real trajectory defined from (2.2) or (2.5) does satisfy 
these equations. 

In this regard the Lagrange principle, as the Hamilton principle, for nonholonomic 

systems is in general case, not a principle of stationary action in the sense of the cal- 
culus of variations. Under specified conditions [S], however, the Hamilton principle 
for nonholonomic systems can have, in the first approximation, the character of the 
principle of stationary action. Since the Lagrange principle is closely related to the 
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Hamilton principle Cl], we can expect that under the conditions mentioned the Lagrange 
principle will also have, in the fiit approximation, the character of the principle of 
stationary action. In order to be convinced of this we consider the equations of the 
extremals of variational problem (2.2) in the class of curves satisfying conditions(2.1) 

and (1.6). This problem on conditional extremum reduces to a problem on uncondi- 
tional extremum 

under conditions (2.3). Here the integrand is 

where h and xr are undetermined multipliers, being certain time functions. It is 
easy to perceive (81 the validity of the equality 

+‘dt= [(F-2%q+t+ &$$A~~]::_- 
to i=I i=l 1 

f8 n 
‘ 

EC 
d r3F t3F 

--“--+-- 

at dq, a4. ) &lidt 
to i=l 1 

Here all variations 6q, are taken to be arbitrary and independent, while the Aqt 
satisfy conditions (2.3), as a consequence of which we obtain from equality (2.6) the 
equations for the extremals and the transversality conditions at the endpoints of the 
extremals 

(2.8) 

F-&$&=0 for t = to, ti (2.9) 

Since by virtue of Eqs. (2.8) the time derivative in the left-hand side of (2.9) is zero, 
that side of (2.9) is constant and equal zero along the whole of the extremum 

Substituting the expression of function (2. ‘7) into this equation, with due regard to 
Eqs. (I.. 6) and (2.1) we obtain the equality 

- (1 + h)& & Qi’Qj’= 0 

i&i=1 

from which we find h = -4 since by assumption [\PL I &&‘@j Ii=+= 0. Con- 
sequently, function (2.7) takes the form 

F = L + h -t 2 x:f I (4;, cri’) 
1 

Substituting this expression into IQ. (2.8), we obtain the equations for the extremals 
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of problem (2.6) 

These equations coincide with the Eqs. (3.2) in [S] for the extremals of the variational 

Lagrange problem for the Hamilton principle. A comparison of Eqs. (2.10) with Eqs. 
(1.9) for the motion of the nonholonomic system (with Qi = 0 leads to the condition 

(2.11) 

necessary and sufficient for the solution of Eqs. (1.9) and (2.1) to be found among the 
solutions of Eqs. (2.10) and (2.1). Thus, for the motions of the nonholonomic system, 
satisfying condition (2. ll), the Lagrange principle has, in the first approximation, the 
character of the principle of stationary action. 

3. In order to bypass the difficulties connected with asynchronous variation we 
can, following Jacobi [9], select as the independent variable a certain parameter h 
constinuously and monotonely varying between constant values h, and A, corres- 
ponding to the system’s positions P, and P, . In the system’s motion the variabl- 
es qi, qi’ and t are functions of this parameter A. We denote the derivative of 
qi with respect to 3L by qi’, so that 

Qi’ = qi’d3L / dt 

The constraint Eqs. (2. l), homogeneous in qi’, become 

fr (4i7 qi’) = O Cz = 1~ . * .T r) 

and the feasible displacements 6qi (for a fixed h ) must, by virtue of (1.3), satisfy 
the conditions 

n @I 

c 
v6gix0 (Z=lyee*yr) (3.1) 

i=l 
z 

If the system’s real motion between certain initial P, and final PI positions, for 
which the constant h of generalized energy integral (1.6) has a specific value, is 
compared with sufficiently proximate variational motions between the same positions 

P, and P, , taking place with the same generalized energy h , as in the real 
motion, then for the latter, by the Jacobi principle 

BhS(1/2(h+Lo)1/Zii+@)dh =0 (3.2) 
ho 

and 

6qi = 0 for h = h,, hr (3.3) 

The functions 8 (qi, qi’) and 0 (qi, qi’) are defined by the formulas 
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if the quadratic form L, and linear form L, entering into the Lagrange function 
L are specified as 

n 

;r: n 

aii (C7J Qi'qj', L1 = ai (CL) 9i’ 
i, 3=1 c 

i=l 

Obviously, the relations 

are valid, and from integral (1.6) follows 

(3.4) 

With due regard to (3. l), from the Jacobi principle (3.2) we can obtain the differen- 
tial equations for the system’s real path 

We see that by the replacement of variable h by t in accordance with (3.4), we can, 

with due regard to (1.6) take Eqs. (3.5) into the for of the equations of motion (1.9) 
with Qi = 0 (i = 1, . . . ) n). 

We now consider the equations for the extremals of variational problem (3.2) in 

the class of curves satisfying constraint Eqs. (2. I). This problem on conditional ex- 

tremum reduces to the problem on unconditional extremum 

(3.6) 

A@ 

under conditions (3.3). Here the integrand is 

The Euler equations for problem (3.6) are 

(3.7) 

(i=l,...,n) 

Comparing Eqs. (3.5) and (3.7) are repeating the arguments (see [5] ), we conclude 
that the condition 

C( aj1 d af, -- ‘l aqi -7 dh aqi dqi = 0 
1, i 

(3.3) 
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is necessary and sufficient for finding some solution of Eqs. (3.5) and (2.1) among the 
solutions of Eqs. (3.7) and (2.1). Condition (3.8) is obviously equivalent to condition 

(2.11). 
Thus, for the motions of the nonholonomic system, satisfying condition (2. ll), the 

Jacobi principle, has, in the first approximation, the character of the principle of 
stationary action. 
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